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LIST OF SYMBOLS

AI Airy function

f Depth of a point source

P (e) Ex'vression defined in Equation (7.1)

g Acceleration of gravity

P Depth of keel of submarine

k U2/g
0

K ,K Modified Bessel Functions of 2nd kind
0 J.

('. (2)
Ln Ln Integrals defined in Equation (19) and (20),

respectively

M Strength of point source

M Strength of line source per unit iength

N .
0

pmq qm Coefficients of assymptotic expansion def'tned in

Equation (Ag)
Q = f( 1 - ta r2 a

R Radial distance from singularity defined in

Equation (2)

U Relative veloci.y of w-*er at Inflinity

x, y, - Rectangular TO-. hn.' 4oordinates, x in the
direction of U and z vart.-calAy upward

x x coordinate of singularity

" Angle defined in Equation (2)

r" Critical angle of 6 deftned in quation (8.)

9 , 9 Constant defined in Equatica (8)
2. 2
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LFictitious friction&l force

p(6),v(6) Coefficients of tr&nsformation defined in
Equation (Ai)

* Velocity potential

Exp-ession defined in Equation (2)

1Wave height due to a point source

rr, Reguler wave and local disturbance due to a
point source respectively

Wave height due to a source line

P Regular wave and local di,.;.,-ban:e e'n a
i source line respectively

CrtCrd Trqnsverse and divergent waves, e espectively.
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INTRODUCTION

The pattern and the height of surface waves due to a sur-

face ship or a submerged body has been considered by n.3ny hydro-

dynamists since Lord Kelvin (1891) worked out the wave system

due to a pressure point on the surface. This problem is attrac-

tive not only because of practical applications in eonnection

with the %ave resistance or stability of ships but also as a

basic physicalphenamenon and because of the delicate application

of mathematics involved.

Kelvin calculated the integral representinr the wave height

by the method of stationary phase whic& is reaz.,oiiably valid far

behind the pressure point inside the critical angle (*19 ° 28').

Havelock (1906) evaluated the wave height on 'he cr'tccai line

Hogner (1923) invebtigated the wave height due to a Kelvin source

in thc- vicinity of tie critical line. Peters (11'P9) and Ursell

(1960) improved the theory and the result using the method of

steepest descent.

Havelock investigated the wave due to a sutrerged sphere

(!928) (see also Wigley (1930)), and the Infinite draft ship

(1932). .Tinnaka also investigated waves of the infinite draft

hip and performed the numerical evaiL. -ion (1957).

In this paper, tl:? "avr !.ilb*:-. e to a zubme.gc! point

source and a source lne is investigated. The wpve height con-

sists of two parts; the regular wave and the local disturbince.

The meth0.d of evaluating the integral representing regular waves

is different in two regions, that in the vicinity and that far

behind the sinralarity. In the vicinity of the singularity, the

numberical i, tegration is performed by the method of Gauss'

quadrature. At the far place, the method of stationary ph.nse
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is used. Pne behavior of the wave height near the cr*tical

line is discussed.

For the local disturbance, the integral can be evaluated

in the elosed form immediately above the singularity. A scheme

involving numericEl computation by high speed machine Is worked

out for other points.

As an example, the wave height due to a simple form of sub-

marine with given dimensions is caiculated in detail. The in-

fluence of the submwrine sail Is included.

WAVE h.-wGfi DUE TO A SIMPLE SOURCE

As usual, the water is assumed to be inviscid, nomogeneous

and incompressible. Hence there exists a potential 0. The

coordinate system Is fixed in the singularity and only the steady

problem is considered. The origin of the right handed coordinate

system O-xyz is located on the mean free surface; x is directed

along tne uniform relative velocity or the water, and z is verti-

cally up.ard. The surface wave Is assumed to be small compared

with the wave length, and the principle of superposition holds.

The derivation of the formula of the wave height due to

a point source located at (x ,O,-f), with the strength M is well1

known (e.g. see Wigley 1949).

ir

u N r i~ksec~k(imiC)

U M / I kok see 0 ekd-f

u *x e -- Re.. . .. dkd9 (1)
k-k see - UL see

-TO0



HYDRONAUTICS, Incorporated

'9 -3-

where

(A (x - x ) cos 0 + y sin 0

R cos (- 6), with xx =R cos , y=R sin (2)
1

k0 = - 6 =arc tan ( -x ) (3)
U 12

pl is the fictitious frictional force which is to be put

=ero after the evaluation of the integral. By cot integration

(see Appendix 1) C becomes the sum of two Integrals,

r ( )

ii/2

4 k (-k sec2 O)sec' 0 cos (kow sec2 O)dOr C  (-
-- 12 + a(5)

,r/2 +6 r
2'_ / / exp (-m s)ecO x

V2 4Icsec f" m2-1r/2 + 6

X (c 0 see2 9 sin (mf) - m cos (mf)} dmdg

r/2 - RI
,-. r , .m cos o) m sec 9 0

sec4  ~ F +kf sec28 sin m
-r/2 0 o (

- Cos M) dmd1 (6
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where o = 0 + 8, Cr Is called the regular wave and C is

the local disturbance which diminishes wlth irge :.

This is the fundamental formula for the surfface wave sl.nce

the body in the water is usually represented by source distri-

buticns. The wave height due to a given body is then obtained

by zuperposition of all the waves produced by each source. The

wave due to higher order singularities such as a doublet Is the

derivative of Equation (4) with respect to the position in the

direction of the higher order singulariny.

The evaluationq of Cr and C In Equations (6) are

not simple. These will be discussed separately In the following

two sections.

EVALUATION OF THE REGULAR WAVE

The evaluation of the integral Cr of Equation (5) is dif-

ferent In the two regions, near and far behind the singularity.

(A) Stationary Phase. On zhe surface far behind the

singularity, i.e. when koR is large,the method of stationary

phase can be applied to the Integral (5). This method was

originated by Lord Kelvin (1887) and can be found discussed In

any related text (e.g. Lamb 1945, P. 395).

Let us consider the Inte..ral

, .v/2

r t 4 N k 0  exp (-ko1 sec2 O)sec5 d co3(he(9)) dO (7)

-,2

where P(e) - sec2 6 cos (e - 8), N = k° . (7.1)
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Since N is large,the part of integratlon betweer. -.r/? and
-,r/2 + o l.j negligibie.

The root of the derivative of F(e) with respect to e is
obtained as

FI(G) = 0

or

2 tan2 8 + tan 0 tan 8 1 = 0
tan . )(

f- I Cot, -81(tana ii f V(Ct

which is only significant when cot2 8 - b -0 or 6 - tan L

(8.1)

Now (7) can be evaluated as the sum of ;wo waves, rt transverse

Sd divergent,

r " rt C,d

Crt 4k secn OA(-kofr ec,; cos (N F(e )k4"

C -k sec*e exp(-kof deca )co (N F(9) "
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where F" (e) = (6 tan 2 e + i) sec2 A cos (b-&)

+ 4 sec2 e tan e sin (5-0) (10)

and the sign of ir/4 is decided as the sign of F"(e).

However, this is only for 6 < 6,. When b = C, which means the

centerline, e = 0, e = - v/2,

POF" (0
2

Hence

rt = 4ko 0 exp (-k0f) cos (N + ) (ii)

Since N a koR = O , the wave length on the center-
0 U2

line is

27rU2 /g (11.2)

When 6 = 6 c which is the critical line, e = e ,
2

F"(e ) 0 and this makes Equati.n (9 .Angular. When 6 > 6

the right hand side of Equation (8) becomes imaginar,.y. In the

vicinity of this critical line far behind the singularity, Hogner

(1923), Peters (1949), and Ursell (1960) investigated thoroughly

tne situation for the wave due to a pressure point.
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Putting tan e = u in Equation (5) and neglecting the interval

(-r/2, -r/2 + 6), we cbtain

= 8k -U- exp(-ko) (i(l + u2 ) exp (-k f u2 ) X
o. U 0o0

0

x cos (kot 4(1 + u'))cos (koyu[(1 + u2 )]du

4k°  exp (-kof )Re/' 4(1 ,u (-kofe) X

22

X exp [iN ((cos 6-u sin 6)>" (1 + u2 )) ]du (12)

where kx = N cos 6 ky = N sin 6.
0 0

We note that the expression for the wave height due to the

pressure point on the surface is exactly the same as that due

to the submerged doublet with the corresponding strength and zero

depth (compare Equation(2.2) of Ursell (1960) with Havelock's

(1928) Equation (12) at far behind the singularity by the change

of variable as above) We mentioned 'ready the relation be-

tween the wave heights due to a aulV . and a point source.

The method of Chester, Friedman, and UrseJl (1957) can be

adopted ro. the asymptotic expansion cC the above equation in

the vicinity of the critical line as in Ursell's paper (1960).

The idea is that in order to use the method of steepest descent

in the vicinity of the critical line(where the usua! methcd of

steepest descent fails) the integral is represented in a series
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of Airy functions (see Jeffreys and Jeffreys, 1946 § 17.07) by

the regular transformation of the variablc of :lta.tr,&- Lu,. Ghcsrer

et al (1957) worked out the rigorous theory. The only difference

between the two cases of the pressure point (by Ursell (1960))

and the submerged point source is in the form of the analytic

function g(z) in the integral

f g(u) eyo fNf(u)1 (12a)

(of Che3ter et al. Equation (1.1)).

The way of derling the asymptotic expansion u, Equation (12)

in the vicinity of the critical angle is exact?,- the same as

Ursell's (1960). His coefficient of transformation i(6) and v(6)

are exactly the same for each angle, which are tabulated in his

paper. The coefficients of the asymptotic expansion of p0 and q

are different. These are derived in Appendix 2 keeping the close

connection with Ursell's paper (1960). The result is:

cos 6 P( 0[exp(- o cot2 (l++)2) (1- )
2 sin* 6 1-8 tan)3

k f
+ exp[- cot26 + (13)

~ +
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cos 6 jt6_ l Q'6 exp- co'

Sexp- ( cota6 (l-Q) 2 ( I -Q) (6 + ] (14

0k f (14)

where Q = 4"(I-8 tan2 6).

Thus we obtain the auymproric expansion of rpe wave neight

taking the real part of the integral (10' (instead of I;maginary

part as in Ursell's (1960) Equation (3.6))

4ko  exp(-kof)( P A(-N ()) cos(Nv(6)

- A' (-4(6)) sin(Nv(6)) (15)

N

which is valid in some finite angle including 6 6 by the

theory proved by Chester et al. (1957). The terms neglected in

the assymtotic series (15) are of order N-3 Ai, and N-i Ai ' at

most. (See Appendix 2)

As was pointed out previously, the difference betwuen the

wave height due to a pressdre point and a doublet is only in the

depth effect. Hence, for the case of a submerged doublet, p_

and qo (in Ursell's table) should only be rultiplied by cor-

responding exponential factor, exp(-kof (I + u')] and
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exp (-kf ( + ) respectively. Since u+ = u_ -- oncot 

the line 5 = 6c , the same factor exp (-k f (1 +--0 ))applied to

PO and q would be sufficient in the very close vicinity of the

critical line. N-mely the wave pattern will be the same in the

close vicinity of the critical line except that the wave height

1.t reduced relative to that of the pressure point. However,

the wave height due to a submergec point source, Equation (15)

is different not only in p0 and q0 but also the sine and cosine

are exchanged from that of the pressure point tu'l.1 ' (4.12)).

(B) In the Vicinity of the Singularity-

Equation (5) can be written as

r o /4k f sec3 exp (-kof sec2 6) cos (kow sec2e)de

r/2 + 

= 4k° "j sec3e exp (-kof sec2e) cos (ko.c sec2e)de

f-r/2

" 4ko i sec3 e exp(-kof sec 2 e)cos[ko cor,(e + 6)ec 2 e~d

(16)
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For'-,the first integral on the right hand side of the above

equation, a useftl table is availaule from the 'dmir.1"':Y A--

search Laboratory (1956). This is derived from the numerical

evaluation of the related integral by the method of Wilson (1957).

The second term is negligible when x - x ib large, but in the
1

near field this term may be important. If a high speed calcu-

lak.ing machine is used, for reasonably small R/f can be read-1

ily evaluated by the use of Gauss' mechanical quadrature formula.

If we change the variable e by tan C = u as in Equation (12),

E4uation (16) becomes

4k M exp(-kof)J r(l + u2 )exp(-k fu 2 )cos[kox 4(l + u2 )]X

X cos[ kyu 4(l + u2 )3 du

4koM exp(-kof) W-(l + u')exp(-k fu2 ) X
0 0 0

X cos[k R cos(arc tan u i)(I + u2 )] du (17)
0

with x 0 for convenience.

The first integral of the right hand eide can be evsluated by the

Hermite-Gauss quadrature formula for which the weights (Christofel

numbers) and the zeros of the Hermite polynomials calculated by



HYDRONAUTICS, Incorporated

-12-

Kopal are available up to the order 20. For the s.p=crd integral,

if x is small, the limit of the integral may better be changed to

5
xx

When x/y is sufficiently large by the change of variable

t = U2

the second integral of the right hand side of Equation (17) will

become

M J
2 - exp [-kof(l + JF(l + t)exp(-t x

0

cos 1k ii cos(tan 4t + 6)(l + t1)] - (18)

t 2
where t =-- +

This can be evaluated by Laguerre-Gaues quadrature for which the

weights and the zeros of the Laguerre polynomials obcained by

Zalzer and Zucker (1949) are available up to the order 15.

Of course, by using a high speed machine such as the IBM

7090, the other method of direct Integration of (17) even v:tth
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Simpson's rule is applicable to the extent that th'e c--lation

is rapid and the ampiltude is 8mall enough to be neglected. But

the speed of calcu3ation also highly depends on the magnitude of

R/f. The advantage, of the method of Gauss' quadrature lies in

its simplicity and 'a time saving, but the error is extreme1?

dIfficult to estimate.

EVALUATION OF THE .OCAL DISTURBANCE

The evaLwation of the integral (6) representing the local

dicturbance is also extremely complicated. T:r F^" been no

ans ytllcal form of the result. Even the numerical method is not

easy, Papecially in the vicinity directly above the singularity,

because of' the slow convergence of the integral. Numerical

evaluation of equation (6) was obtained for a certain range of

parameters by Wigley(1949). The evaluation can be treated

separately in two regions - in the vicinity of the singularity

and away from It.

(A) In the Vicinity of the Zingtlarity

At the point immediately above the singularity the

integral can be evaluated analytically in closed form. The

expression (6), involves a type of Ir.'ral

(1) -mr n emp o dm (19)Ln (p,q,s) =nJo S2 + M2

and

(2) [
Ln  (p,q,s) mn + 1 e-p sin mg dm (20)

PS + m2
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for p > O, n > 0

p - 0, n= 0

which reduce to the well knovn Laplace Integrals (See E:,delyi

1953) when p = n 4 0

L (o,q,s) e (21)

Fnrt,.nauely a part of the integral (6), s -wactly in th's form

when R = 0 or a) = 0. The other part is of the furm L (o,q,s)

which is the divergent integral. However this can be evaluated

as the limit of R-- 0, which can not only be derived formal)y

but also can be Justified rigorously without difficulty.

(1) Fm" e-mPco gd
L (oq,s) = Jim cos mg dm

-. ,. 0 B2 + m2

=lim d rGOm e -Mp sln__mq dm

-. 0 d'' 2 + 2

= To e-qS (22)
2

From Equations (19) - (22),

-mk O sec~e sin (mf)
0 dm k see s e exp (-kof see2 e

k k 2 see 4 0+mfl 2 0So

3
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lina fexp(-mR Cos )emsec Q cosmr) dm = - !kosec 3 & -r, t eeO)
-0 k2 se 4  + m20 Lf

0 0

Hence from (6)

2 M.' exp(-mR cos e)m see
.... RR--O_ k- 0 ec 4 60e x

X [I sec2 e0 sin(mf) - m cos (m')0 dmdJ

-2k secf( + b)exp[-kof sec2 (e + 6)] dO

where o = e + 6, but if 6 = 0,

0

-kr 1exp(-k f/2) [Ko(k f/2) + K (kj/2)] (23)

where Ko , K are modified Besse! funet, -s of the 2nd kind.

(See, e.g. Lunde 1952, page 33).

It is easy to see that is antismmetric with respect to

the y axis. Hence,C = 0 on x = 0 or 6 = r/2. Besides, C, has

a discontinuity in appearance on the line y = 0. Physically

this is impossible. However, it is obvious in equation (6) tha
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is a continuous function of b, even when R- , 0, takinig the

value betweer t, (R -- 0, 6 = 0) and t, (R --. 0, 6 = r) -
-te (R - 0, 6 = 0). This means that, even on R-'* 0, the water

surface is continuous although the derivative is not so exccpt

in the direction 6 = ir/2. Off course,we have to remember that

we neg'kecedal the viscosity and the surface tension.

When R is very small but not equal to zero, there is no

easy method to intcgrate, even numerically. However, it may be

worth while mentioning Barakat's work (10Q I) on integrating

L functions and the uLe of it here.

Using the notations (19) and (20), Equation (6) can be

written,

lr/2

nU J [k 0f sec3 0 L 0 (If Cos e,l,k 0f seceO 0 1
rw/2

-sec 0 oL o ( cos 0,1, k 0f sec 0 3j dO (24)

where e e + 6.

Barakat changed the L function w~lch br in oscillating integrand

into other non-oscillating integrals plu& known functionsa, i.e.

(1)~ ~ (p qs e dtq2___
*q s) 2I e ' , e dt

0' 2(ps) 2+t2  2 o (p) 2 +t 2

+~ (Ci(ps) sin(ps) + (I- S (ps)) cos(p_.)j e-q-

(25)
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As C:s

(2) - et dt + S p sl dt
0 (p,q,s)= e j (ps) + t J (ps)2 + t2

0 0

I+ [Cips) sin(ps) + (I S,1jPs)) cos(ps)]e-qs (26)

where C and Si are cosine and sine integrals respectively, and

2 i

L (p,q,s) p - 0 + "(27)0 p2+ q'

(See Barakat (1961) Equations (27), (28) and (29)).

If we use Equations (24) - (27), the integrand of Equation (24)

can be evaluated at certain points. Then the usual method of

integration can be used with respect to 0.

B. When R/f is not too small - the integral (6) converges

reasonably well. We may then use a combination of quadrature

methods. Equation (6) can be written,
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exp (-(in + (2n + ]'T) cos e]rm + (2n + I)rjs
2 4L j sec eOsin m dmdO

k 2 . ec 4 O + [(2n + I)+m 2

0 0 2

where m =m +- 2 

Because of the exponential term, the Integrand diminishes rapidly

when n increases. We may either use Gat, s' or Simpson's quad-

rature formulas betwten -1 and 1 for both integra.b. Especially
Rt 2 2

when f cos e is reasonably large, say >.5, we r-y directly apply

the Laguerre-Gause quadrature for.-,la to the integral with re-

spect to m of Equation (6), and then the Legendre-Gauss or Simps-'a

quadrature formula to the integral wltn respect to e.

In Pigure 1, the value of (6) is plotted for each Froude

number with respect to the depth versus the distance, x/y, where

the curves for Froude numbers 1 and .707 are plotted using the

table by Wigley for the sake of comparison.

WAVE DUE TO A SUBNERGED SOURCE LINE

The wave height due to a suboK. -ed finite source line can

be obtained by integrat±ig eUtb. -,, j, (5) and (6) wi th re-

snect to the depth f from the top f to the bottom f . The
2. 2

method ;' evaluating the integrals involved are exactly similar

to the case of a point source. If we non-dimensionalize the

physical quantities by the depth f of the top of infinite sub-

merged source line, the result can be used for the case of a

finite source line by matching the corresponding parameters.
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where =e + 6, m m + -0 2 2

At R- 0

ir/2
2M 2

sec 0(exp(-k f seC2 o)-exp(-kof seC 2
eo))deU 0 0- 0 -0/ 2 0

e p(k

where 6 = e + 6. When 6 0 and R- O.

2M

=U exp (-k0f2/2)K (kof2/2)

-exp (-kof/2) K0 (k f /2)]

Figures 2 and 3 show the local disturbance for the submerged

infinite source line for the different distances x/f versus

Froude number with respect to f , and for the different Froude

numbers versus x/f respectively.

WAVES DUE TO A SUB4ARINE

If we represent the submarine hu' ' by a Rankine ovoid and

the sail of the submarine by a cu;.1.- ..Lon of a source line and a

sink line, the wave height due to the submarine can be obtained

by the methods described above. In Figure 4, the dimensions of

the submarine to be used as an example are shown. Figure 5 showS

the corresponding positions and strengths of a point source and

a point sink for the hull, and a source linc aid a sink line for

the sail. These are obtained using the theory of Rankine's
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solids (see e.g. Milne-Thomson page 441) for the hull, and the

two dimensional theory (see Milne-Thomson page 203) for the sail,

which is approximately valid. All figures related tc the sub-

marine are shown with dimensional quantities. Figure 6a shows

the amplitude of the regular wave immediately benind and 5 wave

lengths behind the st-rr Oor several depths. Since the wave

length is 2v V2/g as shown in Equation (11.1), the interactions

between the sources and the sinks of the hull and sail cause

the wiggling of the curve. The effect of speed on the wave

height ia so great that 5 cycle semi-log )aper is used to plot

the amplitudes.

Figure 6b shows the comparison of the amplitudes due to hull

and sail at a distance 5 wave lengths behind the stern. We can

see that the sail waves are dominant up to a speed of about 11 knots

for each depth, while the hull waves become gradually dominant wi~h

increasing speed above 11 knots.

In Figures 7-11 the wave heights near the submarine are

plotted for several angles from the bow of the sail or the bow

of the hull. The two Figures 7 and 8 of these five figures are

transformed to contour diagrams in Figures 12 and 13. As was

shown in Equation (15), for large N, the wave in the vicinity of

the critical line decays like N -* while the wave in 6 << 6c de-

cays like N where N = k R. In the v! Inity of the submarine,

it is noticeable that the transverse %dvc is first prominent and

gradually the divergent wave becomes more prominent when the

distance increases.

In Figures 14 - 17 the local disturbance on the centerline

due to the sall is plotted. The local disturbance due to a

point source or a line source is antisymmetric with respect to
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the axis perpendicular to the velo-ity through tho v':. Jcction

of the singularity on the mean free surface, as shown before.

The local disturbance due to a sink is exactly opposite Jn sign.

Therefore, the local disturbance due to the sail or the hull is

exactly symmetric witn respect to the midsail or the midship

plane. Figure 18 shows the local disturbances in different

directions.

In Figures 19 - 22 the local disturbance due to the hull

is plotted for different depths and diffJ sent speeds.
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APPENDIX I

To evaluate

1 12k k sec e exp[k (iw-f)]
1 dkd

x 2-r k-k see2 0-ip sec e
-, 0
-r 0

W (x - Xi) cos e + y sin e

= R cos (e - b)

6 = arc tan (yx- t

Note the only singularity at k = k + i. sec e,0

where see e > 0 for - < e <

see e < 0 for e < r, - r < e < -

when a > 0 or - 1+ 6 < e < 1+ 6 , we take the contour

ABO instead of OA in Figure Al. When ai< 0, or 1 + 6 << <r

and - r < e < - + 6, we tako the co- "r ACO instead of OA.

Then the singularity in the case - 2< 0 < - 1+ 6 and

< e < 2 + 6 is outside the contour. Thus we obtain:



-26-

CD

V

CDCD0

0 02

a) 0

','

5 IE

vii

. 1,- N

N. a; 0
01

E) E
02i 0

9 ( '
o CDD

0+00+

0 0

k o Q I= I ,

tJo .% o to t

(D to

S I

cd I= li +=1

4: + +Y f

0 CDj 0

0)

0 CD I=o.

I X

00



HYDRONAUTICS, Incorporated

-27-

APPENDIX 2

To apply the method of steepest descent to Equation (12),

first Debye's curves through two saddle points are given by

Peters (1949) in his Figures 5, 6 and 7. These are the roots of

df- ( [(cos 6 - u sin 6) - (1 + u 2 )] = 0 (Al)

du -u6 du (o

Namely, the points

6 = k6 [cot 6 + #F(cot2  -6

and

6 = [cot - '(cot 2 6 - 8)) (A2)

By the method of Chester et al. (1957), the integral can be

expressed in terms of the Airy function (see Jeffreys and

Jeffreys 1946 § 17.07).

D exp(L i)j 3

COe- 3ci

OD

1 cos 1 t s  Zt) dt (A3)

0

where Z is real, we transform the variable u by

F (u,5) -(ccs 6-u sin 6) 4( + u2 ) = - 0 + b)'Jt, (6)

3

(A4)
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which is proved to be a regular one-to-one transformation if the

zeros of Equation (1) , uj and the zeros of

2F (u,8) du _ -v
du dv- 2 - i(6) = 0 (A5)

or

v = - (A6)

correspond. Ursell (1960) calculated 4(6) and v(6) for each

6 near 6,, which can be used here without any change. Now thedu
analytic function g(u) ! in Equation (12a) oz t'-!" :-.,esponding

expression in Equation (12)

exp(-kofU2)(l + u2 )i du/dv (A7)

is expanded in the form

' .(-)(v2 - (6))m + v qm(6)(v2 - .(6))m (A8)
1, 0

0

which holds uniformly when v and 6 - 6c are sufficientjy small.

Coefficients m and qms can be found by repeatedly differenti-

ating both sides and putting u = u+ and v = + . Then the

asymptotic expansion of the i: - 1 " : Is shown to be

,Z~ ~ ~ p 6 fV + uv-%,)] dv

"m(o) ( - ,(6))m exp[iN(- +d

+ , q (6) Jv(v2-I( 6 ))m exp[iN(- L V3 + Ltv-v)ldv

(A9)
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where the integration can be extended with a negligible error

from - exp (ti) to - exp (- ti) (cf Peters Figure ':. ,
obtain the dominant term it is surricient to calculate the

leading coefficients p (6) and qo(6). Putting u =u+ (6),

v = p (6) in Eqiation (19), we obtain

exp(-k f u2*)(l + U 2) &% - PO() ± P 1(6) qo(6) (AlO)

du

where (1)± can be obtained as follows:

62p 2du2 6F d2 u6 (-L) + -- - =- 2v
6u2  dv 6u dv2

whence (62F? (du)2  2 L

6U2  I +

If we put 0 .f(J - 8 tan2 Q), from (A2)

cot 8(1± Q)

and 1 u2 =J cot26 (I ±Q) (ij. Q) (All)

From (AJ-) ,2F, .; i 'l±' 4 )-

From (A= T sin 0 Q(1 Q,) (1

6 I

du
Hence (T) - T -i Q= ' (I - ) (AI2)

in
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where Q = .f(1-8 tan2 6).

Putting these p and q into Equation (A9) we obcai. Lne riest

two terms of the asymptotic expansions of the integral (12)

2r i exp'-iNv(6)) [iN -3 po(6) A,(-N (6))

+ N- f qo(6) A ' (-N p(6))'

Then the aesymptotic expansion of C is obtained taking the
2.

real iDaz!-
= 4k M ex(kf [ p O ( 6 )  ?

exl-j A I i(-Ni  t()) co,,(1:.,(6

q6N * A i  ( - N  (6)) sin(Nv,(B))] (A16)

which is valid in some finite angle including 6 = .

Since (A9) can be rearranged in the form

A '(N.) a ( ) AI'(N* p) bn(p
++

+ ( Cheater nt + (19 7)N3.2n W2 n

(See Cheter et al. (1.957).



IDRONAUTI CS, Incorporated

-3?-

where the fiist two terms come from the first summation related to

of expression (A9) and the other two from the , .-7. related

to qm in (A9). Hence the terms neglected in (A16) by taking

only m O are of orderN A and 9"f A at most.

£ ii
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